
AD-A144 381 ALGORITHMS AND FILE ST1UCTURES FOR COMPUTAAIONALI
DEOMrTRY(D) INSTITUT FUER INFORMATIK ZUIJRCH

AS ED swITZERLAND) J NIEVEROEL DEC 82 DAJA37-82-C 0058 2

I~~~~ flllll 84

U;~ 1. 28 12.5

11.8
11111125 11111_L.4 11111_L.6

MICROCOPY RESOLUTION TEST CHART
NATC A F' H~ALJ I" AP A

Quarterly Progress Report # 3. December 1982/

ERO Contract No. DAM 37-92-C-0058

Algorithms and file structures for computational geometry

Principal Investigator:

Prof. Jurg Nievergelt,
Informatik, ETH,

U CH-8092 Zurich, Switzerland

DTO
AUG 1L3 19840

IPT-

Algorithms and file structures for computational geometry
L Hinrichs, J. Nievergelt, lustitut fMr Informatik, ETH, CH.0M Zorich

Abstract

Algorithms for solving geometric problems and file structures for storing large amounts of geometric data
are of incasing importance in computer graphic8 and computer-aided design. As examples of recent
progress in computational geometry, w I laln plane-sweep algorithms, which solve various topological
and geometric problems efficiently; and we present the grid file, an adaptable, symmetric multi-key file
structure that provides efficient access to multi-dimenslonal data along any space dimension.

Introduction
Today there is a great variety of tools to help the application programmer for solving his problems. Basic
tools are algorithms and data structures with their corresponding elementary access operations. It is the
task of the programmer to represent the objects he s working on by data atructures, and to reduce the
operations he wants to perform on these objects first to known algorithms, second to elementary operations
on data structures, as shown in Fig. 1.

objects___ complex operations
objects such as hidden-line removal

standard objects algorithms

such as boxes such as plane-sweepI I
data sructures elementary access oerations

such as the grid file such as insert, delete, find, range queries

Fig. 1: The role of algorithms and data structures.

We will consider algorithms and file structures for geometric applications. In section 1 plane-sweep
algorithms are discussed as an example of a class of algorithms for solving a large number of geometric
problemL The grid file, an adaptable, symmetric multi-key ile structure Is presented in section 2. Section
3 shows how to apply the grid file to storing geometric objects.

Supported In pat by the European Research Office, US Army, under contract DAJA37-82-C-00S89, R&D
4093-CC.

/

1. Geometric algorithms
1.1 Application areas for geometric algorlthms

One of the objectives of eomputational geometry Is to relate the geometric properties of objects to the
complexity of algorithms that manipulate them. An important benefit of such a study is the development
of efficient algorithms for applications In which geometry plays a major role, such as computer graphics,
computer-aided design or cartography.

In computer graphics and computer-aided design hidden-line and hidden-surface elimination problems
must often be solved. If a 3-dimensional scene is projected into a plane those parts ofan object which are
hidden by other objects must be eliminated. In cartography efficient algorithms are needed for the
computation of areas or checking the consistency of geographical data bases.

Geometric applications frequently involve finding the intersection ofobjects. For example a plane polygon
is simple if and only if no two of its edges intersect. In VLSI (Very Large Scale Integration) design all
intersecting pairs among a set of rectangles in a plane must be computed for design rule checking. We will
consider the problem of finding all intersections among a set of intervals on the real line and the problem
of finding all intersections among a set of line segments In the plane.

The importance of efficient algorithms for these problems is becoming more and more apparent as
applications increase rapidly. For instance a single VLSI-chip or a complicated scene for graphic display
may contain a hundred thousand components, and data bases for geographical data may consist of millions
of data. For these problems even algorithms with a quadratic asymptotic time complexity are impractical.

1.2 Interval Intersection

Suppose we are given n intervals on the real line and are asked to report all Interectang pairs of jwuenUa
(Fig. 2).

i ! i | t

Fig. 2: Interval intersection

Since there are (n2 - n)/2 pairs the asymptotic time complexity of a brute force algorithm is O(n2). This
time bound can be improved by making use of the fact that there Is a natural ordering relation on intervals.
If A and B are given intervals then either A is to the left of , A is to the right of B, or they intersect. For
simplicity of representation we assume that the intervals have no endpoints in common. First we sort the
2n endpoints. Consider an initially empty data structure Q for the storage of intervals with operations
insert, delete and report all intervals in Q. Now the 2n endpoints are scanned from left to right. At each
moment Q will contain those intervals of which the left endpoint, but not the right, has been encountered.
When reaching the left endpoint of an interval, all intervals which are currently stored in Q are reported as
intersecting the interval, which will be inserted as next step. An interval will be deleted from Q when its
right endpoint is encountered. It Is obvious that all pairs of intersecting intervals are reported. Sorting the
endpoints costs O(n log n) time [AHU 741. The data structure Q is a priorlt queue which can be
implemented by a heap or a balanced binary tree [AHU 741. The key under which each interval will be
stored is its right endpoint. Insertion and deletion of one element in such a data structure cost O(log k)
time, if k is the number of elements in this data structure. O(log n) Is therefore In our case an upper bound
for the cost of each of these two operations. Since we scan through 2n endpoints the whole scanning costs
O(n log n) time. The cost of reporting one Intersecting pair is O(1). If there are s intersecting pairs the
total amount of time for reporting them will be O(s). Altogether we get an asymptotic time complexity of
O(n log a + s).

3

1.3 A plane-sweep algorithm for Une segment Intersection

Let us consider the following problem: given n line segments in the plane, report all ersectl pairs of
lb e agment& This can also be solved in a brute force way In 0(n 2) time by Inspecting all pars of line
segments. The algorithm given above for the interval Intersection problem suggests that there Is a similar
algorithm for the 2-dimensional case which runs in time O(n log n + a). where s is the number of
intersecting pairs of line segments. Because there is no geometrically induced ordering relation on line
segments in the plane which is related in a natural way to the Intersection of line segments the above
algorithm can not be used to solve this problem. We have to define a new ordering relation. To simplify
the representation we assume that no segment is vertical and that no three segments meet in a single point.
Also. all of the endpoints of the line segments are assumed to have different x-coordinates. These
assumptions do not change the asymptotic running times of the algorithm which will be described.

Consider a vertical line S sweeping from left to right across the plane (Fig. 3).

S

Fig. 3: S sweeps from left to right.

This vertical line defines a total ordering on the set of line segments which are currently cut by it. Let A
and B be two line segments which are both cut by S at position & A is defined to be above B withrespect
to z if the intersection point of A with S is above the intersection point of B with S. Now it is important to
realize that if segments A and B intersect, then there Is some x for which A and B are consecutive in the
total ordering of the set of line segments which are cut by S at position x. To detect all intersections it is
necessary to maintain this total ordering as S sweeps the plane. The total ordering changes only if S
encounters a left or right endpoint of a line segment or an Intersection point of two line segments. These
points will therefore be called transition pointL In the case of a left endpoint the corresponding line
segment has to be inserted into the total ordering, and then checked to see whether It intersects its upper or
lower neighbour. In the case of a right endpoint the corresponding line segment ha to be deleted from the
total ordering, and the two line segments which become consecutive in the total ordering have to be
checked to see whether they Intersect. When S meets the Intersection of two line segments they are
exchanged in the total ordering, and then the two new pains of neighbours In the total ordering have to be
checked for intersection.

Now the algorithm proceeds in a manner similar to the 1-dimensional algorithm given earlier. It operates
on two data structures, the I-queue and the Y-table, which are common to all plane-sweep alorthms. As
the vertical line S that sweeps the plane advances In the direction of the x-axis the X-queue contains all the
left and right endpoints of line segments and all the intersection points discovered so far which He on the
right side of S and therefore have not yet been processed. These points are soed according to their
x-value and ae assigned a type depending on whether they are a left or right endpoint or an intersection
point. The X-queue Is a pdority queue that supports the following operations within time bound 00(o8 k)
when It contains k entries:

-MIN: find and remove the entry with minimal x-coordinate.
- INSERT: insert a new entry with a Siven i-coordinate.

4

Heaps co baaned trees are suitable for implementing priority queues IAHU 741. The initial contents of the
X-queue are the 2n endpoints of the given line segments, sorted by their x-values; at the end the X-queue
will be empty. At each transition, the point which defines this transition will be removed, and at most two
intersection points are Inserted into X. During execution a total of 2n + s points, where s is the number of
intersecting pairs of line segments, move through the X-queue; the maximal number of entries at any time
is therefore less than 2n + . Since a = 0(n 2), any operation on the X-queue can be done in time
0(log(n+ s)) = 0(og n).

The Y-table contains all the information about the total ordering on the set of line segments which are
currently cut by the vertical line S. It has an entry for each such line segment, containing a formula that
defines the segment. so that for any x the corresponding value y = ax+b can be obtained in time 0(1). At
the beginning and at the end Y is empty. Y is a dictionary that supports operations FIND. INSERT, DELETE,
PREDECESSOR and SUCCESSOR within time bound 0(log k) when it contains k entries (AHU 741. We can
tailor the exact definition of these operations to the specific use we will make of them. thus postulating
dictionary operations that are easily derived from the standard ones:

- F IND(P): given a point P = (x, y. t). obtain one of the following results depending on the
type t of P:
right endpobat the unique line segments whose right end point isP
intersection pob: the two line segments whose intersection point is P.

- INSERT(s): given a line segment s. insert s at the proper place determined by the y-values of s
and the line segments stored in the Y-table at the current x-value.

- DELETE(s): given a line segment s, delete L
- SUCCESSOR(s): given a line segment s and the current x-value, return the neighboring line segment

just above s.
- PREDECESSOR(s): given a line segment s and the current x-value, return the neighboring line segment

just below s.

A dictionary with k entries can be implemented so as to support the above operations within time O0Oo k)
by any of several types of balanced trees JAHU 741. Binary search for a given y-value is performed by
evaluating the linear formulas y = ax + b stored as segment entries along a root-to-leaf path. Since there
are never more than n entries in the Y-table, any of the above operations can be done in time 0og n).

The algorithm that sweeps the plane and reports the pairs of intersecting line segments has the following

simple overall structure:

procedure SWEEP:

X - 2n left and right endpoints of given line segments, sorted by x-coordinate
Y4 empty
while X # empty do
begin

P +- MIN(X)
TRANSITION(P)

end

end of SWEEP;

Procedure TRANSITION is the advancing mechanism of SWEEP. and encompasses all the work involved in
processing one point P and moving the vertical sweep line to the next transition point; in this process it
updates the corresponding data structures and builds up the result in an output structure. TRANSITION is
invoked exactly 2n + s times, if s is the number of pairs of intersecting line segments. We will show that
one invocation uses 0(log n) time, and thus establish an 0((n + s)log n) time bound on the performance of
SWEEP.

In TRANSITION a function INTERSECT(s,t) checks in time 0(1) whether two line segments intersect and
if so, inserts the intersection point into X In time 00o8 n) as we have seen above. Permuting two line
segments s and t does not alter the structure of Y and can be done in time 0(1).

-1

S

procedure TRANSITION(P) breaks Into three cases depending on the type of P:

case l1 endpoi:
s o. line segment starting at P
INSERT(s)
h 4- SUCCESSOR(s)
1 PREDECESSOR(s)
INTERSECT(s.h)
INTERSECT(s, 1)

end of case oft endpoin;

case rit endpob:
FIND(P) yields the unique line segment whose right endpoint is P
h 4. SUCCESSOR(s)
1 - PREDECESSOR(s)
INTERSECT(h, 1)
DELETE(s)

end of case rightendpoi ;

case lhersection point:
FIND(P) yields the two line segments s and t whose Intersection point is P
(suppose that s = SUCCESSOR(t)
h -SUCCESSOR(s)
1 4 PREDECESSOR(t)
INTERSECT(h.t)
INTERSECT(1,s)
permute s and t

end of case intersectlonpobu;

end of TRANSITION;

All three cases of procedure TRANSITION are built from the same building blocks in slightly different
combinations. The operations performed can all be done in time 0(loS n) as we have seen above.
Therefore one invocation of TRANSITION uses 0(log a) time. Since the algorithm that sweeps the plane
makes 2n + s transitions, it runs in time 0((n + s)log n) as stated earlier. Note that ifs is very close to n2

then the running time of the algorithm Is actually greater than the 0(n 2) time of the brute force algorithm.
But in most real applications s is bounded by 0(n).

It's still an open question whether there exists an algorithm which finds the s Intersecting pairs among a set
of n line segments in the plane in time 0(n Jos n + s). Shamos and Hoey ISbHo 76) showed that this time
complexity is a lower bound for the problem.

1.4 Common aspects and generality of plane-sweep algorithms

If presented In a sufficiently abstract form, most planesweep olgorUlh discussed in the literature can be
cast into the same mold. It is useful to understand them as a general clam of algorithms that can solve
many gometric problems in time 0(n log a) instead of the 0(n2) required by naive algorithms.

Many plane-sweep algorithms use three data structures to keep track of the work still to be done and of the
results already accumulated; these are Independent of the type of objects being processed. in the most
general case these are:

The X-queue: a prlordt queue that supports the operations MIN and INSERT In time 0(iog a).

t The Y-table: a dictlouw, that supports F IND. INSERT. DELETE. PREDECESSOR and
SUCCESSOR In time 0(o n).

The 1-swucture: a fI/t tmeturon which APPEND and CONCATENATE operations ae
perfomed In time 0(1).

We don't need the R-structure for the line inteructlon problem.

6

The generality of plane-sweep algorithms can be assessed by considering the following questions, which
can all be answered within the asymptotic time 0((n + s)log n). It includes most questions of pactical
importance in graphic applications. It may come as a surprise that all these properties can be determined
merely by accumulating local information at the moving front.

Topological problems:
- Construct an adjacency graph: each region is represented by a node. an edge
represents a pair of adjacent regions.

- Construct a region enclosure tree: the sons of each node represent the regions
directly surrounded by the region of the father node.

Geometric problems:
- Compute the area of each region.
- Determine the maximal or minimal width (in the y-direction) of each region;
check whether certain minimal distances between regions are maintained.

- List the boundary of each region in cyclic order, and compute Its length.

The efficacy of plane-sweep algorithms is based on the transformation of a 2-dimensional problem into a
sequence of 1-dimensional problems. The 1-dimensional problem turns out to be significantly simpler than
the original 2-dimensional one for the following reason: geometric objects placed in 2-dimensional space
can rarely be totally ordered in a useful way. In the absence of a total order, efficient logarithmic search
techniques, such as binary search, are inapplicable; linear search must be used, leading to 0(n2) instead of
O(n log n) algorithms. On the other hand. the projections onto the 1-dimensional scan line of the line
segments that define these 2-dimensional objects can be totally ordered (by y-coordinate), permitting
logarithmic access time to any object intersected by the scan line. This leads to O(n log n) algorithms.

More on plane-sweep algorithms can be found in IShHo 763, [BeOt 793, IBeWo S0, [Bro 813, [McCr 821 and
[NiPr 82).

2. The grid file
The grid file emerged as an answer to the various deficiencies encountered when traditional file structures
are used for multi-key access to dynamic files [NHS 811. It is a dynamic multi-key file structure that adapts
gracefully to its contents under insertions and deletions, and achieves an upper bound of two disk accesses
for single record retrieval; it also handles range queries and partially specified queries efficiently and
preserves the order defined on each attribute domain In such a way that records which are near in the
domain of any attribute are likely to be in the same physical storage block.

The starting point is the extreme solution given by the bnasp reprueahion of the attribute space, which
reserves one bit for each possible record in the space, whether it is present In the file or not. In a
k-dimensional bitmap the combinations of all possible values of k attributes are represented by a bit
position in a k-dimensional matrix (Fig. 4). A 1 indicates the presence of a record with attribute values
determined by its position in the map, a 0 indicates absence.

IS

Fig. 4: A 3-dimensiond bitmap.

....IL m ' .. - I

,/

7

FIND reduces to direct access. INSERT / DELETE requires that a position in the bitmap be set to 1 or 0
respectively, and NEXT in any dimension requires a scan until the next 1 is found. For realistic applications.
this bitmap Is impossibly large and has to be compressed. In maintaining a dynamic partitioning
(directory) on the space of all key-values one approximates the bitmap through compression. Assuming
independent attributes, but not necessarily uniform distributions, the embedding space from which the data
is drawn Is partitioned in a grid-like fashion: each region boundary cuts the entire search space in two. All
attributes are given the same priority when being partitioned.

The following terminology and notation is used in the example of the 3-dimensional case. On the record
space S = X x Y x Z, a grid partition P = U x V x W Is obtained by imposing intervals on each axis and
dividing the record space into blocks, called grid blocks, as shown in Fig. S. The picture also shows the
effect of refining P by splitting interval vl.

Record space: S=XxYxZ
Grid Partition: P=UxVxW
Intervals of the partition: U = (uo,ul, ... uk)

V = (vo, vi,...v)
- W = (wo,wJ,....w')

w

wI

Wo 0

"I 2

Fig. 5: A 3-dimensional record space X x Y x ,. with a grid partition P = U x V W.

During operation of a file system the underlying partition of the search space needs to be modified in
response to insertions and deletions. The grid partition P = U x V x W is modified by altering only one of
its components at a time. A 1-dimensional partition is modified either by splitting one of its intervals in
two, or by merging two adjacent intervals into one. Fig. 5 shows this for the partition V.

In order to obtain a file system, operations that relate grid blocks and records to each other are needed,
such as: find the grid block in which a given record lies. or list all records in a given grid block. The data
structure used to organize records within a bucket is of minor importance for the file system as a whole; the
structure used to organize the set of buckets, on the other hand, is the heart of a file system. The set of
buckets of a given file system is usually managed through a directory. The purpose of the grid directory is
to maintain the dynamic correspondence between grid blocks in the record space and data buckets. For
reasons of access efficiency, all records in one grid block must be stored In the same bucket. To avoid low
bucket occupancies several grid blocks may share a bucket (Fig. 6). Such a set of grid blocks s called a
bucket region. Bucket regions are only allowed to have the shape of a k-dimensional rectangular box.
These convex regions of buckets are pairwise disjoint, together they span the space of records.

f£

II El LI [olIf]M*f

.m or b with PM Pud

Fig. 6: A convex assignment of grid blocks to buckets.

A grid directory consists of two parts:
-a dynamic k-dimensional array called the grid array; its elements (pointers to data buckets) are in 1:1
correspondence with the grid blocks of the partition;

- k 1-dimensional arrays called linear scales; each scale defines a partition of a domain S.

The grid array is likely to be large and must be kept on disk, but the linear scales are small and can be kept
in central memory.

The following example illustrates bow the grid file is accessed. Consider a record space with attribute year
with domain 0 .. 2000. and attribute initial with domain a .. z. Assume that the distribution of records in
the record space is such as to have caused the following grid partition to emerge:

year = (0, 1000, 1500, 1750, 1875, 2000); initial = (a, f, k, p, z).

A FIND for a fully specified query, such as FIND[1986 ,w], is executed as shown in Fig. 7. The attribute
value 1980 is converted into interval index 5 through a search in scale year, and w is converted into the
interval index 4 in scale Initial. The interval indices, 5 and 4. provide direct access to the correct element of
the grid directory, where the bucket address is located.

1 1980, W, ,. .

L 0 , 1000 1500 , 1750 , 1875 , 2000

1 2 3 4

a, f kw p: z

1 2 3

I(1980,w.... I

Fig. 7: Retrieval of a single record In the grid file.

More details on the grid file can be found In INHS 511.

*- -, _ ---.................... -1 _

9

3. Geometric data base operations on a grid file

3.1 The scope of data structures in computational geometry

The problems that arise in computational geometry can be divided into two classes depending on the
applicability of data structures or algorithms (Fig. 8). Of primary interest for data structures are problems
which involve only simple objects and simple operations. If objects or operations get more complex, tools
become algorithmic in type, for instance plane-sweep algorithms.

objects operation

complex algorithmic problems complex

simple data structure problems simple

Fig. 8: Scope of data structures in computational geometry

Sometimes it is possible to reduce problems that are determined by complex objects or operations to data
structure problems by replacing complex by simple objects or decomposing complex into simple
operations. For instance if the intersecting pairs among a set of complex objects have to be determined, in
first approximation all the objects may be replaced by containers which are of a simple type, and these are
checked for intersection (Fig. 9). Then only those objects whose containers intersect have to be checked
for intersection.

Fig. 9: Replacement of complex objects by containers.

3.2 Simple objects and corresponding operations

Examples of the basic geometric objects under consideration are points, line segments, rectangles, circles,
triangles, k-dimensional rectangular boxes and k-dimensional spheres.

Examples of simple operations or queries are:
- Identity query: find a special object;
-point in object: find all objects that contain a given point;
- object Intersection: find all objects intersecting a given object;
- object containment: find all objects contained in a given object;
- nearest neighbour: find the nearest neighbour to a given object;
- range query: find all objects In a special range.

10

3.3 Representation of simple objects as points in bigher-dlmenSIonal spaces

Many simple geometric objects are defined by a small, fixed number of parameters. Any object with k
parameters can be represented as a point in k-dimensional space. An interval on a straight line may be
described by its left and right end points, zi and x, (Fig. l0a). Its representation in 2-dimensional space is
the point (il, xr). No point will lie below the diagonal because we have xi <= Xr. Since in most
applications an interval will have a length that Is small compared to the length of the range In which the
segments lie. all points will be contained in a narrow band parallel to the diagonal (Fig. 10b). For data or
file smctures that organize the embedding space rather than the data Itself, this clustering leads to
inefficiencies. If we take the midpoint x. and the half length d of the segment we get another
representation (Fig. 10c). Now it is possible for points to be below the diagonal, and furthermore they will
no longer be clustered in a diagonal band. This simple example shows that one has to be careful when
choosing parameters for describing geometric objects: the parameters should be independent of each other
as much as possible.

Ir III - ! t ,i

-- d-
Fig. 10a: Intervals on a straight line.

Fig. lOb: Representation of intervals by left and right endpoints.

d

Io

Fig. 10c: Representation of Intervals by midpoints and half length.

A circle Is given by the centre (z, y) and the radius r and Is represented In 3-dimensional space by the point
(. y. T).

An aligned rectangle, I. e. a rectangle with sides parallel to the axes, can be described by its centre (z. y)
and half the length of each side, di and dy; it s repested in 4-dimensional space by the point (I, y, dx.
dy).

Line segments In the plane are represented a points in 4-dimensional space, rectangles a points in
S-dimensional and triangles as points In 6-dimensional space.

4
11

3.4 Object Intersection and the search region

The example of object intersection will show how to treat basic queries in a set of simple objects If these
objects are represented as points in higher-dimensional space. Given a geometric object q we can describe
exactly the region in the higher-dimensional space that contains all points representing objects which
intersect q.

For instance an interval on a straight line given by its left and right end points x, and ir intersects a query
interval q with end points q, and qr if and only if the inequations x, (= qr and xr) = q. are satisfied. All
intervals which intersect q (Fig. 11a) are represented in 2-dimensional space by points which lie in the
region shown in Fig. l1b. If an interval is given by its midpoint xm and its half length dx, it intersects a
query interval q with midpoint q. and half length dq if and only if the inequations xm - dx (= qm + dq
and xm + dx >= qm - dq are satisfied. In this case all intervals which intersect q are represented in
2-dimensional space by points which lie in the region shown in Fig. 11c.

q
_a I ___b __ _-- c d e

I I

0 4 Fig. 11a: Interval intersection (q = query interval).

xr

search e

0

region 0
h d

-
0 0

ID

a

4

Fig. lib: Search region for interval intersection (intervals given by left and right endpoints).
d

region

heC
0 0

1 <d 1
a 0 d0

00

4 IM

Fig. lIc: Search region for interval intersection (intervals given by midpoints and half length).

All circles which intersect a given circle q with midpoint (X Y) and radius R (Fig. 12a) are represented by
points in 3-dimensional space which lie In a truncated cone (Fig. 12b). The truncated cone is limited in the
z-y-plane by the query circle q.

Tr a '. ." ~ - -o'

. -

ee 12

qd

1- a

Fig. 12a: Circle intersection (q =query circle).

1 qrf

I
b!

1 .
I '

Fig. 12b: Search cone for circle intersection.

In the csofaligned rectangles (Fig. 13a) we get a region in 4-dimensional space which contains all points
representing rectangles that intersect the rectangle q given by its centre (X, Y) and half the length of each
side, DX and DY (Fig. 13b). Thbe region is shown by Its projections in the x-di-plane and in the
y-dy-plane.

Y d

Fig. 13a: Aligned rectangle intersection (q query rectangle).

13

dx dy

Fig. 13b: Search rgion for rectangle intersection.

3.5 Space partitioning by re structures

The efficiency of a file structure for storing simple geometric objects depends on how fast the basic queries
mentioned in section 3.2 can be answered. Like in the case of object intersection each of these queries
defines a coherent search region in the space in which the objects are represented as points. Hence an
efficient file structure should preserve loralify: objects which are represented by points that are near to
each other should have a high probability of" being stored in the same bucket. Therefore in geometric
applications the partitioning of the space by a file structure has a great influence on the efficiency.

The inverted file IKnu 731, for example, partitions the 3-dimensional space into slices parallel to the
x-y-plane if the r-coordinate is taken as the primary key (Fig. 14). Observing that in the case of circle
intersection the search region was a truncated cone (Fig. 12b)), it is clear that the inverted file is an
unsuitable structure for our problem because the cone is badly approximated by such slices.

r0

Fig. 14: Space pargionio by an inverted file.

if the file Is organized as a stoir-d m ng sim ree Ben 75 en 791 the situation looks much better. Let us
consider the 2-dimensional space as an example (Fig. 15). The nodes of the tre contain the coo urinates at

which the space block that corresonds to this node is spalc The leaves of the tree are pointers to buckets
containing all th te sh l n the space block which I a described by the path fa the root to the leaf
and called the bucket region. This can be generalized to hgher-dlmensional spaces. So multi-dimensional
trees partition the space into rectangular boxes.

m--ln ftercodnt stkna h rmr e Fg 4.Osrigta ntecs fcrl

inescintesac-einwsatuctdcn (i.1bi scerta h netdfl sa

ig. 14 Space.pa.ti.ioning.by an.inverted..

14

.6 2 :13 -1 :12

A 5 C D 2 F I L U N 0 P

Y,.

16'
F

14' F 'a P
14 5

12 E '
t N
I I

10 I D
I C

6 I

4 / LAI

2 a

O I , -4
0 2 4 8 10 U 14 14 z

Fig. I5: Space partitioning by a multidimensional tree.

The grid file partitions the space in a similar way, with the only difference that each region boundary cuts
in two the whole space, and not only one space block (Fig. 16). In the k-dimensional case this grid
iartition is described by the k scales which are 1-dimensional arrays and define the partitions of the axes,
and by the grid directory which is a k-dimensional array. To every space block (grid block) there
corresponds an element of the grid directory which is a pointer to the bucket that contains all the points
lying in this space block. A bucket may correspond to several space blocks, but the union of all space
blocks corresponding to one bucket (the bucket region) is only allowed to have the shape of a
k-dimensional rectangular box.

'4
* i
t a
I I

I I
I I

* I
I a
I I

t I

ii

1
ym~e

ii I ,!

Fag. 16: Space partitioning by a grid mie.

In both cases it is clear how to solve the search problem. All buckets whose bucket regions Intersect the
search region must be computed, because these buckets are exactly those which could contain objects to be
searched for.

Prom the point of view of space partition a file organized by a multi-dimensional tree is equivalent to a
grid file. Both partition the space into ar.cuber and therefore preserve locality in the above sense. The
difference between the two comes up in computing the pointers to the relevant buckets, as will be seen In
the next section.

3.6 Effective use of central memory to reduce the number of disk accesses

In the last section we stated that file structures for geometric applications should preserve locality. For a
fast answer to a basic quey it is also necessary that those space blocks which intersect the search region are
computable in an efficient way. Since the multi-dimensional tree and the grid directory are normally
stored on disk, it should be possible to get the pointers to buckets that correspond to contiguous space
blocks in as few disk accesses as possible. Therefore these structures should also preserve contiguiy of
space blocks, I. e. pointers to buckets that correspond to contiguous space blocks should have a high
probability of being stored in the same bucket.

Trees are commonly implemented as list structures. One has to follow pointer chains to compute the space
blocks and to get the pointers to the corresponding data buckets. Fig. 17 shows how a tree is distributed
among buckets, which are denoted by dashed lines.

t _

Fig. 17: Paginating a tree.

Since one chain may be distributed among several buckets and contiguous space blocks may correspond to
non-contiguous subtrees (Fig. 15). it is clear that often more than one disk access is necessary to compute a
space block and to get the pointer to the corresponding data bucket, or to get the pointer to a data bucket
that corresponds to a contiguous space block from a given one. In queries we have to follow several pointer
chains to determine the space blocks that intersect the search region. We can't compute these space blocks
without access to the tree. The dashed lines in Fig. 16 mark the paths which have to be followed to get the
pointers to those data buckets that correspond to space blocks which intersect the search region.

Applying the grid file the situation improves signiflcantly. Those space blocks that Intersect the search
region can be computed without any disk accesses with the aid of the scales which are kept in central
memory. In the concept of resident grid directory (NHS 81], which manages the grid directory on disk and
is also kept in central memory like the scales, the space blocks are distributed among buckets as shown in
Fig. 18. Since contiguous space blocks correspond to contiguous grid directory elements which are likely to
be stored In the same bucket, only few disk accesses are necessary to examine all the $rid directory
elements which contain pointers to the relevant buckets.

16
$Hd Owrym

*e~ rid diaucia

Fig. 18: Distribution of grid directory among buckets.

4. Implementation of the grid file for storing simple geometric objects

A first version of the geometric grid file has been implemented on the Lilith personal computer which has
been developed at ETH Zirich. The programming language is HODULA- 2. In this version the grid directory
is kept in central memory. There are INSERT, DELETE and FI4D operations for single records. Since we
are interested in the application of the grid file for storing simple geometric objects a graphical user
interface has been written for testing and demonstrating the grid file. This program allows to insert, delete
and search aligned rectangles, which are represented as points in 4-dimensional space and displayed on the
screen. In a next version of the grid file program the resident grid directory will be implemented, which is
a kind of small grid directory on the proper grid directory and suits well for storing geometric objects. It
will also be possible to do range queries. This will then be applied to the demonstration program for doing
geometric queries like intersection or containment.

References

[AHU 741 A. Aho, J. E. Hopcroft, J. D. Ullmann: The Design and Analysis of Computer Algorithms,
Addison Wesley, 1974.

[Ben 751 J. L. Bentley: Multi-dimensional Search Trees used for Associative Searching, CACM 18,9, 1975,
50-517.

[Ben 791 J. L. Bentley: Multi-dimensional Binary Search Trees in Database-Applications, IEEE
Transactions on Software Engineering, Vol. SE-5. No. 4,1979,333 - 340.

[BeOt 791 J. L. Bentley, T. A. Ottmann: Algorithms for Reporting and Counting Geometric Intersections,
IEEE Transactions on Computers, Vol C-28. No. 9.1979,643 -647.

[BeWo 80) J. L Bentley, D. Wood: An optimal worst case algorithm for reporting intersections of
rectangles, IEEE Transactions on Computers, Vol C-29, No. 7, 1980. 571 - 576.

(Bro 811 K. Q. Brown: Comments on "Algorithms for Reporting and Counting Geometric Intersections,
IEEE Transactions on Computers, Vol C-30, No. 2,1981,147- 149.

[Knu 731 D. E. Knuth: The Art of Computer Prosramming, Vol. 3. Sorting and Searching, Addison Wesley,
1973.

,We

17

IMcCr 821 E. M. McCreight: Priority Search Trees. Report CSL-81-5. XEROX Corp.. 1982.
INHS 811 3. Nievergelt. H. Hinterberger, K. C. Sevcik: The grid file: an adaptable, symmetric multi-key
ile structure, Report No. 46, Institut fbir Informatik, ETH Zurich, 1981.

(NIPr 821 J. Nievergelt, F. P. Prepanata: Plane-Sweep Algorithms for Intersecting Geometric Figures
CACM 25,.10, 1982, 739 -747.

IShHo 761 M. 1. Shamos, D. Hoey: Geometric intersection problem 17th Annual Symposium on
Foundations of Computer Science (IEEE), 1975, 208 -215.

I)A

lullM

